ar X iv : 0 90 6 . 14 58 v 1 [ m at h . A P ] 8 J un 2 00 9 DIFFERENCE - QUADRATURE SCHEMES FOR NONLINEAR DEGENERATE PARABOLIC INTEGRO - PDE

نویسنده

  • K. H. KARLSEN
چکیده

We derive and analyze monotone difference-quadrature schemes for Bellman equations of controlled Lévy (jump-diffusion) processes. These equations are fully non-linear, degenerate parabolic integro-PDEs interpreted in the sense of viscosity solutions. We propose new “direct” discretizations of the non-local part of the equation that give rise to monotone schemes capable of handling singular Lévy measures. Furthermore, we develop a new general theory for deriving error estimates for approximate solutions of integro-PDEs, which thereafter is applied to the proposed difference-quadrature schemes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Difference-Quadrature Schemes for Nonlinear Degenerate Parabolic Integro-PDE

We derive and analyze monotone difference-quadrature schemes for Bellman equations of controlled Lévy (jump-diffusion) processes. These equations are fully non-linear, degenerate parabolic integro-PDEs interpreted in the sense of viscosity solutions. We propose new “direct” discretizations of the non-local part of the equation that give rise to monotone schemes capable of handling singular Lévy...

متن کامل

ar X iv : 0 90 1 . 08 16 v 1 [ m at h . A P ] 7 J an 2 00 9 DISCRETE DUALITY FINITE VOLUME SCHEMES FOR DOUBLY NONLINEAR DEGENERATE HYPERBOLIC - PARABOLIC EQUATIONS

We consider a class of doubly nonlinear degenerate hyperbolicparabolic equations with homogeneous Dirichlet boundary conditions, for which we first establish the existence and uniqueness of entropy solutions. We then turn to the construction and analysis of discrete duality finite volume schemes (in the spirit of Domelevo and Omnès [41]) for these problems in two and three spatial dimensions. W...

متن کامل

ar X iv : 0 90 9 . 14 80 v 1 [ m at h . A P ] 8 S ep 2 00 9 ON QUASILINEAR PARABOLIC EVOLUTION EQUATIONS IN WEIGHTED L p - SPACES

In this paper we develop a geometric theory for quasilinear parabolic problems in weighted Lp-spaces. We prove existence and uniqueness of solutions as well as the continuous dependence on the initial data. Moreover, we make use of a regularization effect for quasilinear parabolic equations to study the ω-limit sets and the long-time behaviour of the solutions. These techniques are applied to a...

متن کامل

ar X iv : m at h / 06 10 30 1 v 1 [ m at h . A G ] 9 O ct 2 00 6 ALGEBRAIC NAHM TRANSFORM FOR PARABOLIC HIGGS BUNDLES ON P

— In this paper, we give a completely algebraic description of Nahm transform for parabolic Higgs bundles on P. 2 KÜRŞAT AKER & SZILÁRD SZABÓ

متن کامل

ar X iv : 0 90 6 . 07 63 v 1 [ m at h . C O ] 3 J un 2 00 9 HIGHER DIMENSIONAL

We prove upper bounds on the face numbers of simplicial complexes in terms on their girths, in analogy with the Moore bound from graph theory. Our definition of girth generalizes the usual definition for graphs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009